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Abstract

As Deep Learning continues to make sig-
nificant progress in solving various com-
plex tasks, there is a growing need to
discover novel neural network architec-
tures, which is a complicated and time-
consuming process. Neural Architecture
Search (NAS) methods have emerged to
automate network architecture design uti-
lizing advanced Machine Learning tech-
niques, such as Reinforcement Learning
and Deep Learning itself. Currently, NAS
has been applied mostly on convolutional
and recurrent types of architectures. This
thesis aims to transfer existing NAS meth-
ods to design network architectures ca-
pable of solving tasks defined on sets of
instances, referred to as Multiple Instance
Learning (MIL) tasks.
To evaluate the effectiveness of NAS
methods in the MIL setup, we imple-
ment selected search algorithms and con-
duct extensive experiments on benchmark
datasets. We conclude that while Neural
Architecture Search provides a practical
framework to optimize MIL network ar-
chitectures, search space design is crucial
to architecture optimization.

Keywords: Machine Learning, Multiple
Instance Learning, Neural Architecture
Search, AutoML, Optimization

Supervisor: Ing. Jan Drchal, Ph.D.
centrum umělé inteligence FEL

Abstrakt

Hluboké učení dosahlo značného pokroku
při řešení různých složitých úkolů, a je
stále nutné objevovat nové architektury
neuronových sítí, což je komplikovaný a
časově náročný proces. Za tímto účelem
roste zájem o metody automatického vy-
hledávání architektur neuronových síti
(Neural Architecture Search, NAS). Nové
metody vyhledávání využívají pokročilé
techniky strojového učení, jako je napří-
klad posilované a hluboké učení. V sou-
časné době se NAS používá převážně pro
konvoluční a rekurentní typy architektur.
Cílem této práce je přenést stávající me-
tody NAS do návrhu síťových architektur
schopných řešit úlohy definované na mno-
žinách instancí (Multiple Instance Lear-
ning).
Pro vyhodnocení účinnosti metod automa-
tického vyhledávání architektur pro Mul-
tiple Instance Learning jsme implemen-
tovali vybrané vyhledávací algoritmy a
provedli jsme rozsáhlé experimenty na ně-
kolika datových sadách. Došli jsme k zá-
věru, že zatímco NAS poskytuje praktické
nástroje pro optimalizaci architektur neu-
ronových sítí, pro optimalizaci architek-
tury je rozhodující návrh prohledávácího
prostoru.

Klíčová slova: Strojové účení, Multiple
Instance Learning, Neural Architecture
Search, AutoML, Optimalizace

Překlad názvu: Optimalizace
architektury neuronových sítí pro
multiple instance learning

ctuthesis t1606152353 vi



Contents

1 Introduction 1

1.1 Motivation and Goals . . . . . . . . . . 1

2 Theoretical background 3

2.1 Multiple Instance Learning with
Neural Networks . . . . . . . . . . . . . . . . . 3

2.2 Neural Architecture Search . . . . . 6

2.2.1 State-Of-The-Art Review . . . . 7

3 Methodology 15

3.1 Search Methods . . . . . . . . . . . . . . 15

3.1.1 Random Search . . . . . . . . . . . . 16

3.1.2 Reinforcement Learning . . . . . 16

3.1.3 Differentiable Search . . . . . . . 18

3.1.4 Evaluation Methodology . . . . 19

3.2 Adapting NAS to MILNNs . . . . . 20

3.2.1 Search Space Design . . . . . . . . 20

3.2.2 Practical Considerations . . . . 23

3.3 Implementation . . . . . . . . . . . . . . 24

4 Experimental Results 27

4.1 Comparison of Search Methods . 27

4.1.1 Experimental Setup . . . . . . . . 27

4.1.2 Musk . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 Sum of MNIST Digits . . . . . . 30

4.1.4 ModelNet40 . . . . . . . . . . . . . . . 32

4.1.5 IoT . . . . . . . . . . . . . . . . . . . . . . 34

4.1.6 Summary . . . . . . . . . . . . . . . . . 36

4.2 Regularization of Architecture
Distributions . . . . . . . . . . . . . . . . . . . 36

4.3 Single-Path Effect . . . . . . . . . . . . 37

4.4 Discussion . . . . . . . . . . . . . . . . . . . 38

5 Conclusions 39

A Implementation Details 41

A.1 Library Usage . . . . . . . . . . . . . . . 41

A.2 Running the Experiments . . . . . 42

B Bibliography 43

vii ctuthesis t1606152353



Figures

2.1 Sketch of the neural network
optimizing the embedding in
embedding-space paradigm. Source:
[23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Abstract illustration of Neural
Architecture Search methods. Source:
[8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 An example of a recurrent cell in
our search space with 4
computational nodes. Left: The
computational DAG that corresponds
to the recurrent cell. The red edges
represent the flow of information in
the graph. Middle: The recurrent
cell. Right: The outputs of the
controller RNN that result in the cell
in the middle and the DAG on the
left. Note that nodes 3 and 4 are
never sampled by the RNN, so their
results are averaged and are treated
as the cell’s output. Source: [24] . . 10

2.4 An overview of DARTS: (a)
Operations on the edges are initially
unknown. (b) Continuous relaxation
of the search space by placing a
mixture of candidate operations on
each edge. (c) Joint optimization of
the mixing probabilities and the
network weights by solving a bilevel
optimization problem. (d) Inducing
the final architecture from the
learned mixing probabilities. Source:
[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 A step of a controller network
unrolled through time. Dotted lines
represent sampling from a set of
candidate actions according to the
probabilities estimated by the
network. . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 An illustration of the residual
connections included into the
network architecture. Optional
residual connections are depicted
with dashed lines. . . . . . . . . . . . . . . . 22

3.3 Two permutation-invariant MIL
blocks nested in order to process
hierarchical data structures. Identical
blocks have the same color. . . . . . . 22

3.4 Two sequentially stacked
permutation-equivariant MIL blocks
constituting a deep MIL network.
Residual connections are depicted
with dashed lines. . . . . . . . . . . . . . . . 23

4.1 Search space for the Musk
classification task. Solid lines denote
fixed operations. Architecture choices
are denoted with dashed lines.
Activation and aggregation function
choices are represented by σi and gi
nodes respectively. Wi denotes a
fully-connected layer. . . . . . . . . . . . . 29

4.2 An illustration of the search space
for the Sum of MNIST-bags task.
Encoder is build by repeating the
pattern of the layer fed in with a sum
of residual connections from the
previous layers. Dashed lines and
containers represent architecture
choices. . . . . . . . . . . . . . . . . . . . . . . . . 31

ctuthesis t1606152353 viii



4.3 Examples of point clouds generated
for the task. . . . . . . . . . . . . . . . . . . . . 32

4.4 Schematic representation of the
hierarchical model for the IoT task. 34

4.5 Search space for the inner MIL
block. Solid lines represent fixed
connections, dashed lines represent
connection choices. Choice nodes for
activation and aggregation operations
are denoted with σi and gi,
respectively. . . . . . . . . . . . . . . . . . . . . 35

4.6 Parameters of the categorical
distribution at the outer aggregation
function in SNAS after convergence.
Plain attention pooling is clearly
leading. . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Left: Architecture distribution
regularized by the KL divergence
term. Right: Architecture
distribution of the standard DARTS. 37

Tables

3.1 Pooling functions . . . . . . . . . . . . . 21

3.2 Attention functions . . . . . . . . . . . 21

4.1 Benchmark problems . . . . . . . . . . 28

4.2 Accuracy and training time
comparison for Musk dataset. . . . . 30

4.3 An example of the architecture
found by DARTS for Musk dataset. 30

4.4 Accuracy and training time
comparison for MNIST-bags
dataset. . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Accuracy and training time
comparison for Modelnet40 dataset. 33

4.6 Accuracy and training time
comparison for IoT dataset. . . . . . . 35

4.7 Comparison of the DARTS and
SP-DARTS on the MNIST-bags
data. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix ctuthesis t1606152353



ctuthesis t1606152353



Chapter 1

Introduction

1.1 Motivation and Goals

This work combines two recently emerged machine learning topics: Neural
Multiple Instance Learning and Neural Architecture Search. A typical Ma-
chine Learning algorithm is designed to operate on fixed-length vectors of
inputs and outputs. However, in some cases, it is desirable to represent the
data as a set of items, which requires models capable of processing inputs of
variable length without imposing a specific ordering of items. This setting is
referred to as Multiple Instance Learning. The problem was around for
some time, but recent progress in Deep Learning has motivated new methods
based on Neural Networks designed to operate on sets of data samples.

Designing a neural network architecture requires much expertise and can
be time-consuming, making this process desirable to automate. As Deep
Learning continues to make progress in various tasks, the topic of automated
Neural Architecture Search has attracted increasing attention. Recent
developments in NAS show that automatically designed architectures can
outperform prior art manually designed architectures in image classification,
semantic object segmentation, and other problems.

Currently, NAS has been applied mostly on convolutional and recurrent
types of architectures. In this work, we transfer state of the art knowledge to
design MIL networks automatically. Employing NAS can be beneficial for
understanding novel architectures as well as just increasing raw performance
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1. Introduction .....................................
on the tasks.

The main goal is to adapt existing NAS techniques to the domain of
Multiple Instance Learning, evaluate them in different settings, and propose
a method that works best.

ctuthesis t1606152353 2



Chapter 2

Theoretical background

This chapter contains an overview of the theoretical results related to Multiple
Instance Learning and Neural Architecture Search.

2.1 Multiple Instance Learning with Neural
Networks

Multiple Instance Learning (MIL) is a type of a learning problem where
a model operates on sets of instances instead of just operating on individual
instances as most common machine learning models do. In MIL terminology,
a multi-set of instances is called a bag, since the items it contains are not
necessarily unique. Typically, MIL problems involve supervised learning
where the target variable is available only on the level of bags and is unknown
for individual instances. Modeling the bag-level target variable can be quite
challenging since many factors should be taken into account, such as complex
interactions between individual instances in a bag or a presence of a single
instance significant to the task. Problems that are naturally suitable for MIL
formulation arise in different domains, such as drug discovery, classification
of text documents, anomalous image detection, speaker identification, and
network traffic classification. For a detailed discussion of MIL and its aspects,
the reader is referred to [1].

The recent success of Deep Learning in a wide range of problems has
motivated developments on Artificial Neural Networks capable of solving

3 ctuthesis t1606152353



2. Theoretical background ................................
Multiple Instance Learning problems. As a result, new types of network
architectures that can handle sets were discovered. It has been shown that
to perform supervised tasks on sets, it is both necessary and sufficient to
use a permutation-invariant function, which maps input bags to the target
variable[33]. Permutation-invariant mapping preserves its output with respect
to the different orderings of the same input set. If such a mapping is also
differentiable, it can be used in a neural network and be effectively trained
with gradient descent algorithms.

Network architecture proposed by [23] incorporates instance-level processing
layer with a permutation-invariant aggregation layer followed by a classifier.
This formulation is focused on classification but is easily extended to any
supervised task using a suitable loss function. Let X be a non-empty instance
space. The formulation assumes that each bag B ⊆ X is a realization of
some random variable with probability distribution P (pb, y), where pb is a
probability distribution producing individual instances and y ∈ Y is the bag
label. The goal of the model is to learn a discrimination function f : B → Y,
where B is the set of all possible realizations of all possible distributions over
X . The forward pass of the proposed architecture is formulated as follows:

F (B; θ, θf ) = f(g({φ(xi; θ)|xi ∈ B}), θf ) (2.1)

where φ : X → Rm is a parameterized mapping which embeds individual
instances into the space of real vectors, g : PRm → Rm is an aggregation
function and f : Rm → Y is a classifier network. Such units can be nested to
process increasingly complex data structures, such as bags of bags[22].

x1 ∈ Rd

x2 ∈ Rd

x3 ∈ Rd

xl ∈ Rd

...

k(x1, θ)

k(x2, θ)

k(x3, θ)

k(xl, θ)

x̃1 ∈ Rm

x̃2 ∈ Rm

x̃3 ∈ Rm

x̃l ∈ Rm

...

g
�
{x̃i}li=1

�
x̄ ∈ Rm f (x̄, θf )

One vector per instance (connection)

One vector per sample

Fig. 1. Sketch of the neural network optimizing the embedding in embedding-space
paradigm.

formalism is that with a right choice of pooling function g(·) (e.g. mean or
maximum) all parameters of the embedding functions k(x, θ) can be optimized by
the standard back-propagation algorithm. Therefore embedding at the instance-
level (layers before pooling) is effectively optimized while requiring labels only
on the bag-level. This mechanism identifies parts of the instance-space X with
the largest differences between probability distributions generating instances in
positive and negative bags with respect to the chosen pooling function. This is
also the most differentiating feature of the proposed formalism to most prior art,
which typically optimizes embedding parameters θi regardless of the labels.

The choice of a pooling function depends on the type of the MIL problem. If
the bag’s label depends on a single instance, as it is the case for the instance-level
paradigm, then the maximum pooling function is appropriate, since its output
also depends on a single instance. On the other hand if a bag’s label depends on
properties of all instances, then the mean pooling function is appropriate, since
its output depends on all instances and therefore it characterizes the overall
distribution.

Remark: the key difference of the above approach to the prior art [24] is in
performing pooling inside the network as opposed to after the last neuron or
layer as in the cited reference. This difference is key to the shift from instance-
centric modeling in prior art to bag-centric advocated here. However the pro-
posed formalism is general and includes [24] as a special case, where instances
are projected into the space of dimension one (m = 1), pooling function g is set
to maximum, and layers after the pooling functions are not present (f is equal
to identity).

4 Experimental evaluation

The evaluation of the proposed formalism uses publicly available datasets from
a recent study of properties of MIL problems [8], namely BrownCreeper, Core-
lAfrican, CorelBeach, Elephant, Fox, Musk1, Musk2, Mutagenesis1, Mutagen-

Figure 2.1: Sketch of the neural network optimizing the embedding in embedding-
space paradigm. Source: [23].

Another type of processing unit proposed to solve a MIL problem is
called the permutation-equivariant layer[33]. Permutation-equivariant layer
maps an input set to an output set of the same size such that the out-
put set preserves the ordering of the input set, i.e. f([xπ(1), . . . , xπ(M)]) =

ctuthesis t1606152353 4



..................... 2.1. Multiple Instance Learning with Neural Networks

([f(xπ(1)), . . . , f(xπ(M))]) for any permutation π. It is shown that the only
form this operation can take is

f(x) = σ(xΛ− g(x)Γ) (2.2)

where x ∈ Rm×d is a bag of m instances stacked into a matrix, g : Rm×d →
R1×d is a commutative polling function, σ is a point-vise non-linearity and
Λ,Γ ∈ Rd×d′ are model parameters. The output of this layer is a bag of trans-
formed input instances y ∈ Rm×d′ . The advantage of permutation-equivariant
layers is that their combination preserves permutation-equivariance property,
which allows stacking them into deep networks.

A typical aggregation function used in MIL networks is one of the summa-
tion, the mean or the element-wise maximum function. However, the choice
does not have to be limited to these simple functions. Attention-based aggre-
gation functions have been shown to outperform standard pooling functions
in some tasks[11]. Attention mechanism applied to the MIL problems enable
importance-weighted aggregation. In general, attention-based pooling has
the form of the weighted average:

g(B; θ) =
∑
x∈B

α(x; θ)x (2.3)

where α : X → [0, 1] is an attention function which serves as an impor-
tance weight which depends on the particular instance, and it holds that∑

x∈B α(x; θ) = 1 for each bag B. Attention can also provide useful insights
into the importance of the individual instances for the bag classification.

To summarize, a general recipe for applying a neural network to bagged
inputs is to combine the instance-level learning with the bag-level learning, and
the main ingredient to it is the permutation-invariant aggregation function.
Using neural networks as universal approximators to encode the instances
before the aggregation provides a powerful mechanism to end-to-end learning
of the bag embedding jointly with the task-specific post-processing network.

5 ctuthesis t1606152353



2. Theoretical background ................................
2.2 Neural Architecture Search

The term neural network architecture refers to the arrangement of neurons
into layers and the connection patterns between layers, activation functions,
and learning methods. The architecture of a neural network determines how
a network transforms its input into an output and how efficient the network
is in performing the task.

Since designing and fine-tuning a neural network architecture requires a lot
of expertise and can be time-consuming, there is growing interest in automated
Neural Architecture Search (NAS) methods. Recent developments in
NAS show that automatically designed architectures can outperform prior
art manually designed architectures in image classification, semantic object
segmentation and other problems. NAS is closely related to hyperparameter
optimization and AutoML paradigm.

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A ∈ A

performance
estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about typical properties of architectures
well-suited for a task can reduce the size of the search space and simplify the search.
However, this also introduces a human bias, which may prevent finding novel archi-
tectural building blocks that go beyond the current human knowledge.

• Search Strategy. The search strategy details how to explore the search space
(which is often exponentially large or even unbounded). It encompasses the clas-
sical exploration-exploitation trade-off since, on the one hand, it is desirable to find
well-performing architectures quickly, while on the other hand, premature convergence
to a region of suboptimal architectures should be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Performance
Estimation refers to the process of estimating this performance: the simplest option is
to perform a standard training and validation of the architecture on data, but this is
unfortunately computationally expensive and limits the number of architectures that
can be explored. Much recent research therefore focuses on developing methods that
reduce the cost of these performance estimations.

We refer to Figure 1 for an illustration. The article is also structured according to these
three dimensions: we start with discussing search spaces in Section 2, cover search strategies
in Section 3, and outline performance estimation methods in Section 4. We conclude with
an outlook on future directions in Section 5.

2. Search Space

The search space defines which neural architectures a NAS approach might discover in
principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks, as illus-
trated in Figure 2 (left). A chain-structured neural network architecture A can be written
as a sequence of n layers, where the i’th layer Li receives its input from layer i − 1 and

2

Figure 2.2: Abstract illustration of Neural Architecture Search methods. Source:
[8]

NAS methods can be differentiated by three main components which
constitute a search algorithm:

. Search space defines a set of architectures which can be discovered in
principle.
Generally search spaces can easily be of infinite size, which makes com-
plete exploration not just impractical, but simply impossible. One of
the popular and methods to produce a more compact search space is to
optimize "micro architecture" - the architecture of a smaller unit ("cell")
which are stacked in deep learning fashion to produce a "macro architec-
ture". Although this method of search space design has proved successful,
it introduces human bias into the search procedure, preventing discovery
of completely novel architectures. The trade-off between exploitation
(and efficiency) and exploration is quite common for search procedures in
general and should be considered when developing a new NAS method.
The choice of the search space determines the optimization problem and
suitable optimization methods.

ctuthesis t1606152353 6



.............................. 2.2. Neural Architecture Search

. Search strategy guides the exploration of the search space. An example
of a popular and effective strategy for small search spaces is random
search – uniform sampling from the set of all possible configurations.
Search strategies are discussed in more detail in the following section..Performance estimation strategy is the process of estimating the
performance of candidate architectures.

A naive way to estimate the performance is to train and evaluate the
network, which takes a prohibitive amount of time in the NAS setting,
where estimation procedure is run thousands of times. Various techniques
are employed to improve performance estimation time. Proxy metrics
are lower bound estimates of real architecture performance. They can be
obtained e.g. by training for a small amount of epochs or on a smaller
subset of data. Other possibilities include curve extrapolation, sharing
weights across multiple candidates and using surrogate models which can
learn and predict performance of networks in search space. Performance
estimation process is often governed by the search strategy.

A good NAS algorithm thus ideally should satisfy following characteristics:

. ability to handle large or even unbounded search spaces;. potential to find novel architectures which are not necessarily based on
current conventions in manual design;. it should be equipped with a suitable performance estimation strategy
to avoid computational overhead of training a large amount of candidate
architectures.

In general the problem of NAS is intractable unless some compromises are
made. For a survey of NAS methods, reader is referred to [8].

2.2.1 State-Of-The-Art Review

This section provides a short overview of most notable research directions in
NAS.

7 ctuthesis t1606152353



2. Theoretical background ................................
Evolution

Evolutionary optimization is a traditional method of finding neural ar-
chitectures. The process follows a general evolutionary algorithm: population
of architectures is evolved by producing offsprings via mutation of selected
architectures. Mutation can be done with operations such as adding a new
layer or a connection, altering hyperparameters of the existing layer and as
well as altering training hyperparameters. Offsprings are then trained and
added to the population if their fitness (e.g. performance on the validation set)
is sufficient. Evolutionary scheme provides a lot of space for customization,
raising a whole family of NAS methods. For a survey of evolutionary NAS,
reader is referred to [27].

Model-based Optimization

Bayesian Optimization (BO) has already been successfully applied to the
hyperparameter search for various algorithms, including Machine Learning[9][25].
Bayesian Optimization is an iterative search strategy for optimization of black-
box functions which are typically costly to evaluate, which is the case for the
validation loss of an untrained neural network. The main idea of the approach
is to construct a surrogate probabilistic model which approximates actual
objective function while being easier to optimize. Algorithm starts with a
prior (uninformed) distribution as a surrogate model. At each iteration,
surrogate objective is optimized to obtain candidate hyperparameters which
are used to evaluate actual objective. Resulting value is used to update prob-
abilistic model using Bayes Theorem, resulting in the posterior distribution.
Sequential Model-Based Optimization [10] (SMBO) approach gener-
alizes over Bayesian Optimization. It uses a surrogate function to estimate
real objective and acquisition function to select candidate hyperparameters.
Gaussian Process and Tree Parzen Estimators are popular choices for imple-
menting a surrogate model, and Expected Improvement can be used as the
acquisition function[3]. These procedures are useful to optimize relatively
small real-valued or discrete hyperparameter spaces. A general search space
in NAS problem is too large for this case.

Auto-Keras system [15] adapts Bayesian Optimization to the search space
of neural architectures. It uses Gaussian Process as the surrogate model.
To circumvent the restriction of Gaussian Processes which are defined only
on real domains, authors use a kernel trick and introduce an edit-based
distance kernel for neural networks. They use an Upper-confidence Bound
as an acquisition function to balance between exploration and exploitation.

ctuthesis t1606152353 8



.............................. 2.2. Neural Architecture Search

The method is provided with an efficient implementation, utilizing parallel
computations.

Progressive NAS (PNAS) [18] uses a SMBO strategy which searches archi-
tectures in order of increasing complexity. However, it is unconventional in a
way that it uses a Recurrent Neural Network as a surrogate model. Search
space of PNAS consists of neural cells which are composed from successively
stacked blocks. Acquisition of new architecture parameters is done in a
progressive fashion: starting with a set of candidate cells consisting of B
blocks, it iteratively updates K most promising architectures by expanding
them with all possible blocks creating cells consisting of B + 1 blocks. Search
space is limited by the maximum number of blocks in the cell.

Reinforcement Learning

NAS can be formulated as a Reinforcement Learning (RL) problem. The
case when agent’s action space is the same as the search space is essentially a
multi-armed bandit problem. At each iteration agent generates an architecture
and receives a reward based on the estimated architecture performance.
Another option is to formulate NAS as a sequential decision process in which
agent samples architecture sequentially, constructing it from building blocks
such as layers. However, there is no interaction with the environment during
this process and the reward is obtained only after the last action.

Zoph and Le [34] use a Recurrent Neural Network (RNN) controller
to sequentially sample a string that encodes the architecture. The controller
is auto-regressive: hyperparameters are predicted one at a time based on the
previous network outputs, so that it can make the most suitable addition to
the architecture generated so far. RNN stops after the predefined number of
iterations and undergoes a simple post-processing step in case if the generated
graph is invalid. Resulting network is trained for a reduced amount of epochs
and its performance on the validation set is used as the reward signal to the
controller and its parameters are updated with REINFORCE method. RNN
controller is powerful and can generate architectures of variable length, which
makes it suitable for discovering deep architectures. This method has shown
good empirical performance, however, it requires a few GPU days to reach
convergence due to the inefficient performance estimation strategy.

Efficient NAS (ENAS) [24] uses weight sharing among generated models in
order to reduce the search time significantly. The main idea is that the search
space can be viewed as a supergraph (also referred to as parent model or
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Figure 1. An example of a recurrent cell in our search space with 4 computational nodes. Left: The computational DAG that corresponds

to the recurrent cell. The red edges represent the flow of information in the graph. Middle: The recurrent cell. Right: The outputs of the

controller RNN that result in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, so

their results are averaged and are treated as the cell’s output.

Figure 2. The graph represents the entire search space while the

red arrows define a model in the search space, which is decided

by a controller. Here, node 1 is the input to the model whereas

nodes 3 and 6 are the model’s outputs.

perposition of all possible child models in a search space

of NAS, where the nodes represent the local computations

and the edges represent the flow of information. The lo-

cal computations at each node have their own parameters,

which are used only when the particular computation is ac-

tivated. Therefore, ENAS’s design allows parameters to

be shared among all child models, i.e. architectures, in the

search space.

In the following, we facilitate the discussion of ENAS with

an example that illustrates how to design a cell for recur-

rent neural networks from a specified DAG and a controller

(Section 2.1). We will then explain how to train ENAS and

how to derive architectures from ENAS’s controller (Sec-

tion 2.2). Finally, we will explain our search space for de-

signing convolutional architectures (Sections 2.3 and 2.4).

2.1. Designing Recurrent Cells

To design recurrent cells, we employ a DAG with N nodes,

where the nodes represent local computations, and the

edges represent the flow of information between the N
nodes. ENAS’s controller is an RNN that decides: 1) which

edges are activated and 2) which computations are per-

formed at each node in the DAG. This design of our search

space for RNN cells is different from the search space for

RNN cells in Zoph & Le (2017), where the authors fix the

topology of their architectures as a binary tree and only

learn the operations at each node of the tree. In contrast,

our search space allows ENAS to design both the topology

and the operations in RNN cells, and hence is more flexi-

ble.

To create a recurrent cell, the controller RNN samples N
blocks of decisions. Here we illustrate the ENAS mecha-

nism via a simple example recurrent cell with N = 4 com-

putational nodes (visualized in Figure 1). Let xt be the

input signal for a recurrent cell (e.g. word embedding), and

ht−1 be the output from the previous time step. We sample

as follows.

1. At node 1: The controller first samples an activation func-
tion. In our example, the controller chooses the tanh activa-
tion function, which means that node 1 of the recurrent cell

should compute h1 = tanh (xt · W
(x) + ht−1 · W

(h)
1 ).

2. At node 2: The controller then samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function ReLU. Thus,

node 2 of the cell computes h2 = ReLU(h1 · W
(h)
2,1 ).

3. At node 3: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 2 and the activation function ReLU. There-

fore, h3 = ReLU(h2 · W
(h)
3,2 ).

4. At node 4: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function tanh, leading

to h4 = tanh (h1 · W
(h)
4,1 ).

5. For the output, we simply average all the loose ends, i.e. the
nodes that are not selected as inputs to any other nodes. In
our example, since the indices 3 and 4 were never sampled
to be the input for any node, the recurrent cell uses their
average (h3 + h4)/2 as its output. In other words, ht =
(h3 + h4)/2.

In the example above, we note that for each pair of nodes

j < ℓ, there is an independent parameter matrix W
(h)
ℓ,j . As

shown in the example, by choosing the previous indices,

the controller also decides which parameter matrices are

used. Therefore, in ENAS, all recurrent cells in a search

space share the same set of parameters.

Our search space includes an exponential number of con-

figurations. Specifically, if the recurrent cell has N nodes

Figure 2.3: An example of a recurrent cell in our search space with 4 computa-
tional nodes. Left: The computational DAG that corresponds to the recurrent
cell. The red edges represent the flow of information in the graph. Middle: The
recurrent cell. Right: The outputs of the controller RNN that result in the cell in
the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled
by the RNN, so their results are averaged and are treated as the cell’s output.
Source: [24]

hypernetwork), and all discovered architectures are its subgraphs. In ENAS,
search discovers cells which are then stacked to get the deep network, so this
is the case of discovering micro-architecture while the macro-architecture is
fixed. The RNN controller samples N decision blocks, each one specifying
the hyperparameters of the DAG node (e.g. activation function) as well as
with which edges to take as an input. Each edge is associated with the set
of network parameters and since the edges come from a common supegraph,
the weights are shared across sampled models. This way, the results of
the training phase are not discarded and used in the further search. While
preserving the performance of the RNN controller, this method speeds up
the search process by 1000x in terms of GPU-hours compared to previous
RL-based method. Performance estimation technique where all models share
their parent’s weights is referred to as One-shot NAS.

Differentiable Architecture Search

Differentiable Search uses continuous search space representation to en-
able gradient-based optimization of both network weights and architecture.
Architecture is represented by a computational supergraph similarly to the
ENAS search space. In differentiable search methods, each node of the parent
graph is parameterized by the set of coefficients, so that the output of the
node can be computed as f(x;w) =

∑m
i=1 αioi(x;w), α ≥ 0,

∑m
i=1 αi = 1,

where α denotes architecture coefficients, w are the models weights and o ∈ O
are possible operations to choose from, e.g. convolution. Network weights
and architecture parameters are optimized jointly using backpropagation to
compute the gradients as in standard Deep Learning. Let Lval and Ltrain
denote validation and training loss, respectively. The problem which is solved
by differentiable search methods can be formulated as:
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Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

A special zero operation is also included to indicate a lack of connection between two nodes. The
task of learning the cell therefore reduces to learning the operations on its edges.

2.2 CONTINUOUS RELAXATION AND OPTIMIZATION

Let O be a set of candidate operations (e.g., convolution, max pooling, zero) where each operation
represents some function o(·) to be applied to x(i). To make the search space continuous, we relax
the categorical choice of a particular operation to a softmax over all possible operations:

ō(i,j)(x) =
�

o∈O

exp(α
(i,j)
o )

�
o�∈O exp(α

(i,j)
o� )

o(x) (2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector α(i,j) of
dimension |O|. The task of architecture search then reduces to learning a set of continuous variables
α =

�
α(i,j)

�
, as illustrated in Fig. 1. At the end of search, a discrete architecture can be obtained by

replacing each mixed operation ō(i,j) with the most likely operation, i.e., o(i,j) = argmaxo∈O α
(i,j)
o .

In the following, we refer to α as the (encoding of the) architecture.

After relaxation, our goal is to jointly learn the architecture α and the weights w within all the mixed
operations (e.g. weights of the convolution filters). Analogous to architecture search using RL (Zoph
& Le, 2017; Zoph et al., 2018; Pham et al., 2018b) or evolution (Liu et al., 2018b; Real et al., 2018)
where the validation set performance is treated as the reward or fitness, DARTS aims to optimize the
validation loss, but using gradient descent.

Denote by Ltrain and Lval the training and the validation loss, respectively. Both losses are deter-
mined not only by the architecture α, but also the weights w in the network. The goal for architecture
search is to find α∗ that minimizes the validation loss Lval(w

∗,α∗), where the weights w∗ associated
with the architecture are obtained by minimizing the training loss w∗ = argminw Ltrain(w,α

∗).

This implies a bilevel optimization problem (Anandalingam & Friesz, 1992; Colson et al., 2007) with
α as the upper-level variable and w as the lower-level variable:

min
α

Lval(w
∗(α),α) (3)

s.t. w∗(α) = argminw Ltrain(w,α) (4)

The nested formulation also arises in gradient-based hyperparameter optimization (Maclaurin et al.,
2015; Pedregosa, 2016; Franceschi et al., 2018), which is related in a sense that the architecture α
could be viewed as a special type of hyperparameter, although its dimension is substantially higher
than scalar-valued hyperparameters such as the learning rate, and it is harder to optimize.

3

Figure 2.4: An overview of DARTS: (a) Operations on the edges are initially
unknown. (b) Continuous relaxation of the search space by placing a mixture
of candidate operations on each edge. (c) Joint optimization of the mixing
probabilities and the network weights by solving a bilevel optimization problem.
(d) Inducing the final architecture from the learned mixing probabilities. Source:
[19]

min
α

Lval(w∗(α), α)

s.t. w∗(α) = arg min
w

Ltrain(w,α)
(2.4)

To avoid overfitting the architecture, it is common that weights and pa-
rameters are optimized on the training and validation datasets, respectively.
Final architecture can be extracted e.g. by choosing the operations with
maximized architecture weights: o∗ = arg maxoi

αi. Resulting network has to
be retrained from scratch since the optimization procedure essentially learns
to rank candidate architectures. Performance on the validation set during
training does not directly correspond to the real performance of the network,
however, these quantities are strongly correlated.

Differentiable Architecture Search (DARTS) [19] uses a simple approxima-
tion scheme to avoid nested optimization in (2.4). Optimization alternates
between applying gradient descent update to the architecture parameters
α and weights w. Convex combination of the operators is formulated with
softmax transformation of α. DARTS have managed to achieve competitive
results while using substantially less computational resources compared to
RL-based NAS methods. Convolutional cells learned on CIFAR-10 dataset
were also transferable to the ImageNet problem.

Although DARTS has shown good performance, it has been argued that it
introduces bias to the search due to the fast convergence of some child models.
Shallow or smaller subgraphs can converge quickly which leads the their
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2. Theoretical background ................................
exploitation and harms the exploration of other architectures. Self-Evaluated
Template Network (SETN) [6] algorithm addresses this problem by treating
learned architecture parameters as discrete probability distributions over
graph edges. Instead of selecting a single final architecture after convergence,
it samples N candidate architectures according to the probability distribution
learned during the optimization and evaluates them to select the best one.

Stochastic NAS (SNAS) [31] uses a blend of stochastic and differentiable
search strategies. Operation choices are encoded as categorical random
variables. Choosing the architecture is then equivalent to sampling from the
joint distribution of all operation choices, similar to the ENAS algorithm.
Distributions of these variables are learned during the fully differentiable
search procedure. As in DARTS, these choices are embedded directly into the
computation graph of the search space. In order to make samples from the
categorical distribution differentiable with respect to the class probabilities,
the algorithm employs the Gumbel-Softmax trick[14]. It also uses a scheduled
temperature parameter to control the exploration-exploitation trade-off during
the learning procedure. The parameterization of the search space is similar
to the DARTS version:

f(x;w) =
m∑
i=1

αioi(x;w)

αi = exp((log(πi) + gi)/τ)∑m
j=1 exp((log(πj) + gj)/τ)

(2.5)

where πi are parameters of the categorical distribution, gi are i.i.d. samples
drawn from Gumbel(0, 1) and τ > 0 is the temperature parameter. For low
temperature values, softmax output is close to the true one-hot samples from
the categorical distribution with class probabilities π. SNAS eliminates the
bi-level optimization problem of DARTS since the choices are sampled directly
during the forward pass. Architecture probabilities are adjusted during the
backward pass without the need of any additional mechanisms such as policy
gradient updates. This procedure is shown to be equivalent to sampling
candidate architectures from the hypernetwork-induced search space with
RNN as in ENAS.

Analysis of the One-Shot approach suggests that obtaining promising
architectures does not require optimization of hypernetworks or RL. Search
procedure described in [2] trains a parent network where all possible output
paths in the cell are aggregated and randomly samples candidate architectures
after convergence. Most promising architectures (having highest performance
on validation set) are trained and evaluated from scratch. To stabilize
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training and avoid co-adaptation of the parameters, authors use path dropout
to randomly "turn off" parts of the graph. Experimental results suggest that
network learns to optimize weights on the most promising operations and
ignore the rest of them, even without additional architecture parameterization.
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Chapter 3

Methodology

This chapter describes the process of applying Neural Architecture Search
methods to find MIL network architectures. We implement several state of
the art search methods and design a search space for MIL architectures.

3.1 Search Methods

To study performance and efficiency of NAS techniques we select Reinforce-
ment Learning based method, Differential Architecture Search method and
the Stochastic Search, referred to as ENAS, DARTS and SNAS, respectively.
These methods are selected for the reason that at their core they rely only
on the gradient descent optimization, which is in line with the end-to-end
learning paradigm of Deep Learning. Although ENAS, DARTS and SNAS
are closely related in theory[31], in practice they can produce significantly
different results. To control the effect of these methods, we use Random
Search algorithm as a baseline. All of these methods can be seen as a form
of the guided (unguided in the case of the Random Search) architecture
sampling.
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3. Methodology.....................................
3.1.1 Random Search

Random Search has proven to be a strong baseline method for hyperparameter
optimization and architecture search[17]. The main advantages of the algo-
rithm are simplicity and good exploration properties. However, in the case of
neural networks it is inefficient, since every sampled architecture should be
trained from scratch which is a time-consuming process. We can address that
by using a smarter performance evaluation strategy without compromising
the simplicity of the algorithm. Firstly, training until convergence might be
excessive to rank architectures. It should be sufficient to train the network
for a small fixed amount of epochs and employ early stopping, which cuts off
the learning process when the loss stops decreasing on a validation data set
reserved specifically for this purpose. Second option is to use weight sharing
similarly to ENAS and other One-Shot search strategies. While it introduces
some bias to the search, it greatly reduces computational costs. We use both
of these options and refer to them as Random Search (RS) and Random
Search with Weight Sharing (RS+WS), respectively.

Algorithm 1: Random Search
Input: Number of iterations n, Search space S, performance

evaluation function Eval
Output: Neural Network Architecture α
p← −∞;
α← ∅;
for i← 1 to n do

αi ← SampleUniform (S);
pi ← Eval (S, αi);
if pi > p then

p← pi;
α← αi;

end
end

3.1.2 Reinforcement Learning

For the Reinforcement Learning approach, we adapt the ENAS[24] algorithm.
Original paper does not include all the details of the training process, so
our version is not an exact reproduction of it, but an adaptation. In the
Reinforcement Learning NAS formulation, state space and action space are
identical and consist of successive architecture choices. Actions are produced
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by the controller. Controller is a policy network build from an encoder,
which embeds individual actions into the vector space, a recurrent unit which
processes an action embedding and a set of decoders, one for each action.

?

Embedding

RNN

Decoder1 Decoder2 Decodern...

Embedding

RNN

Decoder1 Decoder2 Decodern...

h

action1 action2

Figure 3.1: A step of a controller network unrolled through time. Dotted lines
represent sampling from a set of candidate actions according to the probabilities
estimated by the network.

To produce an action, the output of the recurrent network is fed into
the corresponding decoder which produces a vector of action probabilities.
Action is then sampled from a categorical variable distributed according to
these probabilities. This process is repeated in an autoregressive fashion,
each sampled architecture choice is fed into the embedding layer on the next
step, until all choices are sampled and the architecture is complete. Sampled
architecture is trained for a fixed amount of epochs on the training set and
evaluated on the validation set. Performance measured on a validation set is
used as a feedback signal to the controller network. To train the controller
with backpropagation, REINFORCE[29] policy gradient rule is used. This
process is equal to a single controller epoch and can be repeated for a fixed
number of times or until the convergence. All sampled architectures are
assumed to be a part of the hypernetwork and share trained weights across
controller epochs.
As in the original paper, we use REINFORCE rule with a reward moving
average baseline to reduce the variance of the gradient estimate. We add
entropy regularization to the REINFORCE loss which penalizes over-confident
decisions of the policy network. It helps to prevent premature convergence
to a local minimum and encourage exploration. We use a single LSTM cell
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as a recurrent network and a single fully-connected layer per each decoder.
Hidden dimension size is kept across embedding, RNN and decoder input.
Size of the decoder’s output is determined by the number of choice options.

Algorithm 2: ENAS
Input: Number of epochs n, Search space S, performance evaluation

function Eval, learning rate η
Output: Trained Controller network πθ
Initialize the controller network πθ using S;
for i← 1 to n do

// Sample architecture probabilities
πi ← SampleController (πθ);
// Sample architecture choices
αi ← WeightedSample (S, πi);
Ri ← Eval (S, αi);
// Update the Controller using REINFORCE rule
θ ← θ + ηRi∇θlnπθ(αi);

end

3.1.3 Differentiable Search

We adapt two differentiable search methods: DARTS[19] and SNAS[31]. In
these methods, each choice is represented as a parameterized mixture of
candidate operations. The difference is that in DARTS the coefficients of
the combination are computed in a purely analytical way, while in SNAS the
coefficients approximate one-hot samples from the categorical distribution,
which is closer to sampling a single operation from the candidate set. Another
difference is the optimization scheme. To enforce architecture generalization,
DARTS alternates between optimizing the weights of the model and the
architecture parameters on different data sets. SNAS optimizes both the
model and architecture parameters in a single pass. Weights of candidate
models are naturally shared since they constitute one large hyper-network.
DARTS and SNAS at high temperature values are prone to the effect of weight
co-adaptation, which is caused by operations in a mixture getting dependent
on each other which may lead to overestimating candidates scores. To combat
this effect, we can select a single operation by introducing the argmax function
into the forward pass of the mixture. In some works this modification of
DARTS algorithm is referred to as the Single-Path NAS[26]. Similar trick for
SNAS is the Straight-Through Gumbel-Softmax estimator[14]. We refer to
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these variations as SP-DARTS and ST-SNAS in the experiments.

Algorithm 3: DARTS
Input: Number of iterations n, Architecture parameters α, Network

parameters w, Loss function L, learning rate η
Output: Neural Network Architecture α
for i← 1 to n do

α← α− η∇αL(w,α);
w ← w − η∇wL(w,α);

end

Algorithm 4: SNAS
Input: Number of iterations n, Architecture probabilities π, Network

parameters w, Loss function L, learning rate η
Output: Neural Network Architecture α
for i← 1 to n do

(w, π)← (w, π)− η∇w,πL(w, π);
end

3.1.4 Evaluation Methodology

In order to compare different search methods, a properly crafted evaluation
procedure is required. Due to the stochastic nature of most search algorithms,
we evaluate them through architecture sampling. Some of the methods result
in ready to use models, while others require post hoc training of the model
parameters.
We evaluate search methods through the following procedure. After the
training is finished, K architectures are sampled from the resulting model.
Architecture sampling is natural for stochastic methods like ENAS and SNAS.
For DARTS, we treat learned architecture weights as parameters of categorical
distribution and draw i.i.d. samples at each choice node according to them. In
Random Search, K samples are drawn from N top performing architectures
discovered during the search. Sampled architectures are then trained from
scratch on the same data set that was used for search. Finally, resulting
models are evaluated on a held-out test set. This approach enables us to
estimate the expected performance of models produced by the search method.
It also gives us the information about performance distribution and variance.
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3.2 Adapting NAS to MILNNs

In order to use NAS algorithms in MIL architecture search, the most impor-
tant step is to develop a suitable search space. Another thing to consider is
that current NAS methods are designed with Convolutional and Recurrent
architectures in mind, as well as with imaging and textual data sets, respec-
tively. In MIL, data sets and learning dynamics may differ from conventional
ones which might affect the behavior of the search procedures.

3.2.1 Search Space Design

Arguably, search space design is more important than the search method
because it defines which architectures can be discovered in principle. When
defining the search space we introduce potentially promising operations and
structures, while disregarding ones that are not useful at the risk of introducing
bias to the search procedure. However, a completely unbiased search space is
impossible to achieve since it would not be practical. The search space has
to be reasonably constrained so that the search algorithm can explore it in
a practical time budget. Another thing to consider is that for the different
search methods to be comparable, search space should be agnostic to the
algorithm using it. It means that conceptually different algorithms should be
equally exposed to the search space and be able to find any architecture it
contains.

In order to define the search space for MIL networks, we separate the
architecture into units which constitute MIL blocks. Overall architecture can
consist of one ore more blocks combined in parallel or serial fashion. Parallel
combination allows networks to process hierarchically structured inputs, while
serial combination can be employed to build deep MIL networks. MIL block
consists of an encoder network, an aggregation function and a decoder network,
corresponding to the formulation in the equation 2.1. Encoder and decoder
units can have an arbitrary search space depending on the task being solved.
As an example, when solving an image processing task, encoder architecture
would most likely be a Convolutional Network. Aggregation operations are
chosen from two groups of options. One group consists of standard pooling
functions, such as sum, mean, etc. The second group is attention-based
pooling functions. The dimensionality of the search space of one block is
dim(block) = dim(encoder) × (|Op| + |Oa|) × dim(decoder), where Op and
Oa are sets of pooling and attention operations, respectively.
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Following table summarizes all aggregation functions used in the experi-
ments.

Pooling Formula
sum p =

∑k
i=1 φ(xi)

mean p = 1
k

∑k
i=1 φ(xi)

elementwise max p = [max{φ(xij) | i = 1 . . . k} | j = 1 . . .m]

Table 3.1: Pooling functions

Following table lists all candidate attention functions used in the experi-
ments. Variations denoted as mlp and gated are introduced by [11]. Linear
attention is a simple dot product between the encoded input instance and
the learnable "context vector".

Attention Formula
linear si = wTφ(xi)
mlp si = wT tanh(Vφ(xi))
gated si = wT (tanh(Vφ(xi))� sigm(Uφ(xi)))

Table 3.2: Attention functions

Attention coefficients are obtained with a softmax function over all scores
in a bag:

ai = exp(si)∑b
j=1 exp(si)

(3.1)

Search space of the permutation-equivariant MIL layers differs from that
of the permutation-invariant layers in that it is more restricted. The only
variable parameters of the layer are an aggregation function and an activation
function. We adopt a simplified version of the layer which consists of a single
matrix multiplication:

f(x) = σ(β + (x− g(x))Γ) (3.2)

Choices for the aggregation operation g are the same as in the permutation-
invariant case.

It has been shown that MIL architectures can benefit from so-called residual
connections[28] which are widely adopted e.g. in convolutional architectures.
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Thus it would be reasonable to incorporate the possibility of such connections
into the search space. We add a bag-level skip connection choice into the
search space of both MIL layers. Sum of multiple aggregation unit outputs is
passed as an input to the decoder unit. For each potential residual connection,
a search algorithm chooses between two candidate operations: an identity
f(x) = x or a zero operation f(x) = 0, which correspond to the inclusion
and exclusion of the residual connection, respectively. It is also possible to
add connection choices into encoder and decoder networks if it is reasonable
for the task being solved. Residual connections do not violate theoretical
properties of MIL networks.

encoder encoder encoder

g1 g2

f1(X) f2(X) g3f3(X) decoder

Figure 3.2: An illustration of the residual connections included into the network
architecture. Optional residual connections are depicted with dashed lines.

Individual MIL blocks can be combined into complex networks. Nested
permutation-invariant blocks allow processing of tree-structured data. In
this case blocks at the inner level share search space and model parameters.
Permutation-equivariant blocks can be stacked sequentially and retain their
equivariance property. It is possible to add residual connections to these
networks in a similar way as with permutation-invariant networks.

Bag1

MIL block1

MIL block1

MIL block1

MIL block2

...

h1

h2

hn

x i

x i

x i

Bag2

Bagn

y

Figure 3.3: Two permutation-invariant MIL blocks nested in order to process
hierarchical data structures. Identical blocks have the same color.
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x i f1(x i)
?1

g1

f2(x i)
?2

g2

Figure 3.4: Two sequentially stacked permutation-equivariant MIL blocks con-
stituting a deep MIL network. Residual connections are depicted with dashed
lines.

In general, state of the art NAS methods cannot operate with hierarchical
search spaces, where some parts of space are dependent on the choice of a
certain architecture parameter. This problem can arise for example when
working with fully-connected networks, which are still wide-spread in MIL ap-
plications. Each consecutive layer of the fully connected network is dependent
on the output size of the previous layer. Another problem with these types
of search spaces is that weight sharing among heterogeneous architectures
is impossible, which significantly increases memory demands of the search
procedure. For these reasons we do not optimize hidden dimension sizes of
the fully connected layers and keep them fixed. Instead, we focus on the
search of the best combination of activation and aggregation functions, as
well as the optimal connectivity structure between the operations.
Due to the fact that encoder and decoder units of the permutation-invariant
MIL block are largely domain-dependent, it is also impossible to discover a
transferrable MIL block suitable for a broad range of tasks.

3.2.2 Practical Considerations

Training of the search methods requires a lot of tricks and subtle adjustments
which may seen unimportant, however they can be crucial to convergence
of the learning procedure. Some papers describing the search algorithms
do not come with source code and an exhaustive list of all parameters and
details of the search, which makes them hard to reproduce. We use several
techniques to stabilize the training and improve search convergence. They
are not directly related to any algorithm but are nonetheless important.
We found the batch size of 1 to be enough in MIL problems tested in our
setup. This is equivalent to processing one bag per iteration of the gradient
descent. This also enables usage of Batch Normalization layers[13], since a
single bag can be seen as a batch of instances. Our hypothesis is that batch
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normalization stabilizes training in a setup with combinations of multiple
activation functions in the search space.
A special regularization scheme is employed to decay the weights that are
being currently active and avoid unnecessary decrease of the weights that are
"turned off" by the search. This effect arises in Random Search with Weight
Sharing and ENAS while using some kind of weight decay. Since it is part
of the loss function, all weights are penalized at each iteration, even though
just a small part of them is being active at the current step. This can lead to
poor performance of network paths that are chosen rarely, which results in
accumulating "winner-takes-all" effect.
A similar effect can be observed when a candidate set contains operations that
are not trainable or have few parameters and heavily parameterized operations
at the same time. It is the case for aggregation operation choice which includes
parameterized attention and plain pooling functions. Operations that perform
reasonably from the start or take a few iterations to do so accumulate higher
architecture parameters, while other operations do not get enough gradient
updates and can not perform at their full power. One possible solution to
this problem is to use a number of iterations at the beginning of the search as
a warm-up for parameterized operations and keep parameter-less operations
disabled for this time. Another option is to regularize architecture parameters.
We can use the KL divergence between the architecture distribution and a
uniform distribution as a regularizer and anneal the strength of that term as
the number of iterations increases to assist convergence. The modified loss is
formulated as follows:

L(T ;α, θ) = L(T ; θ) + ξ
∑
α∈S

DKL(A(α)‖Q) (3.3)

where A is a categorical distribution induced by the architecture parameters
α ∈ S, Q is a discrete uniform distribution and ξ is a regularization strength
coefficient. We compare both of these options in a separate experiment.

3.3 Implementation

We implement a minimalistic library for Neural Architecture Search in the
Julia programming language[4]. It is built on top of the Flux.jl[12] framework,
which provides a broad range of functionality for Machine Learning and
Differentiable Programming. Our library contains a set of abstractions and
primitives for creating search spaces, as well as implementations of selected
search strategies. Search spaces provide a general interface that can be used
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by a wide range of search algorithms.
All the code, including experiments, is written in the Julia language. It is
a general-purpose language designed with scientific programming in mind.
Julia’s type system allows first-class support of Automatic Differentiation
at compile-time, making it an excellent choice for Deep Learning paradigm.
However, it is worth noting that as of today, Julia’s Machine Learning
ecosystem is still in development and is far from maturity.
Appendix A contains a detailed description of the implementation as well as
the instructions on reproducing experimental results.
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Chapter 4

Experimental Results

In this chapter we demonstrate the conducted experiments. In the experiments
we compare selected search methods on several benchmark MIL problems,
and analyze the effects of their modified variations. We then discuss the
results and propose a search method best suited for MIL networks based on
the experimental results.

4.1 Comparison of Search Methods

4.1.1 Experimental Setup

The goal of the experiment is to compare different NAS methods in terms of
performance and efficiency on MIL problems. We compare Random Search,
DARTS, SNAS, ENAS adapted to the MIL setting as described in the previous
section. When available, we add a published human-designed model to the
comparison.
We use the following metrics for the comparison:

. Task-specific performance metric (e.g. classification accuracy). Training time (relative to the Random Search)
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To make the comparison between the search algorithms more general, we

evaluate them on a diverse set of problems:

Dataset Task Inputs
Musk[7] classification real vectors

MNIST-bags regression images
IoT classification hierarchical features

ModelNet40[30] classification point clouds

Table 4.1: Benchmark problems

Although majority of the datasets concern with solving a classification task,
each of them provides a unique input structure which requires distinct search
spaces.

4.1.2 Musk

This dataset describes a set of 92 molecules classified by humans as musks
or non-musks. The goal is to learn to predict whether new molecules will
be musks or not. Each molecule is represented by a bag of it’s possible
low-energy spatial conformations, which are obtained by rotating bonds of
the molecule. If one of these conformations is marked as musk, then the
molecule is considered to be a musk.

Search space for this task contains a single MIL block. The encoder consists
of three fully connected layers with 128 neurons per each one, last layer is
followed by a dropout operation with probability 0.5. Their activation func-
tions σi are chosen from {tanh,ReLU,ELU[5]}. There are three aggregation
function choices, all of them are connected to the output classifier by optional
residual connections. Since the dataset is quite small to properly learn the
attention pooling, aggregation functions are chosen from the set of basic pool-
ing operators Op only. The dimensionality of that space is 33×33×23 = 5832.
The search space is inspired by the basic MI-Net model[28], which is also
used as a human-designed baseline.
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Figure 4.1: Search space for the Musk classification task. Solid lines denote
fixed operations. Architecture choices are denoted with dashed lines. Activation
and aggregation function choices are represented by σi and gi nodes respectively.
Wi denotes a fully-connected layer.

MI-Net[28] and all architectures sampled for the evaluation procedure are
trained for 10 epochs with batch size equal to one using SGD with Nesterov
momentum[21] and L2 weight regularization.
Random Search and Random Search with Weight Sharing were run for 100
iterations. Evaluation strategy is to train the sampled model and validate
on a small held-out portion of the training set. Training is done for 1 epoch
for Random Search with Weight Sharing and 10 epochs for vanilla Random
Search.
ENAS was run for 50 epochs. Controller network with hidden dimension
100 was trained with an ADAM[16] optimizer with learning rate η = 10−4.
Evaluation strategy is to train the sampled model for 1 epoch and validate
on a small held-out portion of the training set.
DARTS was run for 25 epochs, SGD with learning rate η = 5 · 10−6 was used
to optimizer network weights and ADAM with learning rate η = 5 · 10−5 was
used to optimize architecture parameters.
SNAS was run for 25 epochs with an ADAM optimizer and a learning rate
η = 50−5.
Due to the small dataset size, training procedure has shown to be sensitive
to the train-test split. To combat this effect, we evaluate all methods using
10-fold cross-validation and list averaged results along with standard deviation
values.
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Results are summarized in the following tables:

Method Accuracy Relative training time
MI-Net 0.88± 0.097 -
RS 0.88± 0.18 100%

RS+WS 0.88± 0.14 13.1%
ENAS 0.9± 0.11 3.1%
DARTS 0.89± 0.11 0.08%
SNAS 0.89± 0.1 0.29%

Table 4.2: Accuracy and training time comparison for Musk dataset.

Choice chosen value
σ1 tanh
σ1 tanh
σ3 ELU
g1 max
g2 max
g3 mean
c1 enable
c2 disable
c3 enable

Table 4.3: An example of the architecture found by DARTS for Musk dataset.

In general we observe that most sampled architectures include residual
connections and tend to mix different aggregation functions. Furthermore,
ELU activations are preferred over ReLUs. However, this is merely an obser-
vation, since the search space seems to consist mostly of local optima. Slightly
modified resulting architectures sometimes can reach better performance than
original ones. There is no clear winner in terms of accuracy among search
methods.

4.1.3 Sum of MNIST Digits

We create a dataset for the task of estimating the sum of digits in a bag
of 28× 28 digit images originally obtained from MNIST dataset. Bags are
formed by random samples of the original images. Each training bag consists
of up to 10 images and the size of testing bags is limited by 50.

Search space for this task contains a single MIL block. Encoder is a
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Convolutional Neural Network which plays the role of the feature extractor.
Encoder network consists of 5 operations which are connected arbitrary
forming a directed acyclic graph. This is achieved by optional residual
connections: j-th operation can take a sum of outputs of the nodes from
1 to j − 1 as an input. Operations are chosen from the set of options
{identity, conv 3x3, conv 5x5,max pool, avg pool}. Non-linearity is fixed to
the ReLU function. Number of channels and spatial dimensions are preserved
across the operations to make them compatible. The last node is followed by a
fully-connected layer and a flattening operation to produce a one-dimensional
vector. Bag of these representations is aggregated by a pooling function chosen
from Op ∪ Oa. Finally, the last fully-connected layer produces an estimate of
the bag sum. Dimensionality of the search space is 55 × 65 × 210 = 2.48 · 1010.

Encoder

agg W yopi opj

× N

Figure 4.2: An illustration of the search space for the Sum of MNIST-bags
task. Encoder is build by repeating the pattern of the layer fed in with a sum
of residual connections from the previous layers. Dashed lines and containers
represent architecture choices.

Random Search and Random Search with Weight Sharing were run for 5000
iterations. Evaluation strategy is to train the sampled model and validate
on a small held-out portion of the training set. Training is done for a 1000
iterations for Random Search with Weight Sharing and 1 epoch for vanilla
Random Search. Low number of iterations in the evaluation phase indented
to make random search methods feasible.
ENAS was run for 200 epochs. Remaining setup is the same as in the Musk
experiment.
DARTS was run for 200 epochs, SGD with learning rate η = 10−4 was used
to optimizer network weights and ADAM with learning rate η = 10−5 was
used to optimize architecture parameters.
SNAS was run for 200 epochs with an ADAM optimizer and a learning rate
η = 50−5.
All architectures sampled for the evaluation procedure are trained for 100
epochs with batch size equal to one using ADAM optimizer and L2 weight
regularization. We sample 10 architectures and select the best-performing
one to measure performance of the method.

31 ctuthesis t1606152353



4. Experimental Results .................................
We use accuracy of the rounded predictions as the evaluation metric since it
is more intuitive than MAE loss.

Results are summarized in the following table:

Method Accuracy Relative training time
RS 0.82 100%

RS+WS 0.80 14.5%
ENAS 0.86 5.1%
DARTS 0.87 0.55%
SNAS 0.89 0.89%

Table 4.4: Accuracy and training time comparison for MNIST-bags dataset.

Sampled architectures employ residual connections and mostly use simple
sum pooling, which might be the most suitable choice in the task of estimating
the sum of bag labels. Contrary to the Musk experiment, advanced search
methods were able to outperform the Random Search by a significant margin.
This may be the sign that the proposed search space is more complex and
contains a lesser number of effective candidate architectures.

4.1.4 ModelNet40

Figure 4.3: Examples of point clouds generated for the task.

ModelNet40[30] dataset provides CAD models from the 40 categories. It can
be formulated as a point cloud classification task, which can be seen as a MIL
task, since point clouds are just sets of real vectors. To do so, we randomly
sample 5000 points in the R3 space from each model. Note that a lot of
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structural information about the faces of models is discarded and the resulting
representation of the object is very compact. Permutation-equivariant model
used for the same task in DeepSets[33] is used as a baseline. In DeepSets,
point clouds used for training undergo some data augmentation techniques
such as random rotations and scaling. We do not employ these techniques to
avoid them contributing to the higher accuracy score and focus only on the
architecture instead.

Search space for this task consists of three permutation-equivariant layers
followed by bag aggregation and a 40-way fully-connected layer to predict
the categories. Number of channels at all layers is set to 512. Each of the
layers contains a choice of the activation and aggregation function. Search
space also includes optional residual connections between aggregation units.
Activation functions are chosen from the set {tanh,ReLU,ELU}, and aggre-
gation functions are chosen from Op ∪ Oa. The dimensionality of the search
space is 33 × 63 × 22 × 6 = 1.4 · 105.

Random Search and Random Search with Weight Sharing were run for 2500
iterations. Evaluation strategy is to train the sampled model and validate on
a small held-out portion of the training set. Training for model evaluation is
done for 1 epoch in RS and for 1000 iterations in RS+WS.
ENAS, DARTS and SNAS were all run for 150 epochs. Remaining setup is
the same as in the previous experiment.
All architectures sampled for the evaluation procedure are trained for 50
epochs with batch size equal to 4 using Adam optimizer and L2 weight regu-
larization. As in the previous setup, we report the best accuracy among 10
sampled architectures.

Results are summarized in the following table:

Method Accuracy Relative training time
DeepSets + transformation 0.9± 0.3 -

RS 0.87 100%
RS+WS 0.88 16.8%
ENAS 0.91 5.1%
DARTS 0.89 0.12%
SNAS 0.9 0.48%

Table 4.5: Accuracy and training time comparison for Modelnet40 dataset.

Again, random search methods are on par with advanced search techniques.
We observe that sampled architectures tend to utilize simple pooling functions
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such as max in intermediate layers, whereas attention pooling seems to be the
best option for the last aggregation which precedes the classifier. Residual
connections have negligible impact on the performance of the permutation-
equivariant architecture.

4.1.5 IoT

The dataset describes network scans of Internet-of-Things devices from 13
classes. Each scan contains a set of open ports and some other information,
e.g. the list of registered DNS services on the device. A simple MIL task for
this dataset would be to classify the device according to the network scan.
To make this a hierarchical MIL task, we group scans into bags and label
these second-level bags according to the presence of the IP security cameras
turning the task into the binary classification of hierarchical data.

...

Device scans

MIL block

MIL block

MIL block

h1

Devices

h2

hk

MIL block 0/1

{
  udp:5060,
  udp:5353,
  tcp:443,
  ...
 }

{
  udp:5060,
  tcp:8080,
  tcp:111,
  ...
 }

{
  udp:5060,
  udp:5353,
  tcp:56439,
  ...
 }

Figure 4.4: Schematic representation of the hierarchical model for the IoT task.

Search space for this task contains two MIL blocks, inner and outer one.
Inner block operates on the level of individual device scans, and outer block
outputs a prediction based on outputs of the inner block. Open ports are
embedded into 64-dimensional real vector space and are process by a DAG of
linear layers and non-linear activation functions. Non-linearities are chosen
from the set {identity, tanh,ReLU,ELU[5]}. For each of the activations, an
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input is chosen from one of the outputs of the previous activation nodes. All
outputs are tied up with aggregation functions which are connected to the
block output by optional paths.
Outer block of the search space consists only of the aggregation function and
a final fully-connected layer to produce the prediction. The dimensionality of
such search space is 43 × 4× 63 × 23 × 6 = 2.6 · 106.

Emb
x i

?1 ?3W1,3

?2

W1,2

W1

W2

g3

W2,3

g2

g1

Figure 4.5: Search space for the inner MIL block. Solid lines represent fixed con-
nections, dashed lines represent connection choices. Choice nodes for activation
and aggregation operations are denoted with σi and gi, respectively.

Random Search and Random Search with Weight Sharing were run for
2500 iterations. Evaluation strategy is the same as in the previous experiment.
ENAS, DARTS and SNAS were all run for 250 epochs. Remaining setup is
the same as in the previous experiment.
All architectures sampled for the evaluation procedure are trained for 100
epochs with batch size equal to 1 using SGD with the learning rate η = 10−6

optimizer and L2 weight regularization. We report the best accuracy among
10 sampled architectures.

Results are summarized in the following table:

Method Accuracy Relative training time
RS 0.82 100%

RS+WS 0.83 17.2%
ENAS 0.82 7.4%
DARTS 0.84 0.22%
SNAS 0.86 0.89%

Table 4.6: Accuracy and training time comparison for IoT dataset.

Similarly to the most conducted experiments, guided search methods
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outperform Random Search only by a small margin. In this task, search
methods have found attention operations to be beneficial for the classification.
This is a natural discovery since not all bags are relevant to the classification
of the single type of device. Optional connections between the aggregations
and the output in the inner MIL block are typically enabled. This can be
interpreted as some sort of mixture of different attention heads.

Figure 4.6: Parameters of the categorical distribution at the outer aggregation
function in SNAS after convergence. Plain attention pooling is clearly leading.

4.1.6 Summary

According to the results of the conducted experiments, we conclude that no
single search method is best in terms of performance for the search spaces
used in the experiments. However, DARTS is consistently outperforming
other algorithms in terms of convergence speed - it is orders of magnitude
faster than Random Search baseline, even if the latter is augmented with the
weight sharing strategy. It is still much faster than guided non-differentiable
search represented by ENAS. Although SNAS has some appealing theoretical
properties, it is on par or slightly worse than DARTS, so there is no strong
reason to use it. In general, search methods are able to discover adequate
architectures able to perform well.

4.2 Regularization of Architecture Distributions

We compare the DARTS algorithm augmented with Kullback–Leibler diver-
gence regularization term, as described in the section 3.2.2. Two methods were
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trained in the IoT task setting, where KL divergence term could potentially
aid the exploration and give more weight to attention functions. Results
show that the effect is negligible as it does not affect the performance and
the choice distribution remains nearly the same.

Figure 4.7: Left: Architecture distribution regularized by the KL divergence
term. Right: Architecture distribution of the standard DARTS.

4.3 Single-Path Effect

Another small-scale experiment is conducted to measure the effect of single-
path search modification of DARTS. We compare the methods in the setting
of Sum of MNIST-bags task, as it is the most computationally intensive
among all experiments.

Method Accuracy Relative training time
DARTS 0.88± 0.12 100%

SP-DARTS 0.87± 0.17 89.2%

Table 4.7: Comparison of the DARTS and SP-DARTS on the MNIST-bags data.

Results show that there is no significant drop in performance of SP-DARTS
compared to the standard DARTS, whereas the former is somewhat faster
to train, which makes SP-DARTS a good candidate when the computing
power is limited. However, more extensive experiments should be conducted
to reach a definitive conclusion.
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4.4 Discussion

According to results of the search strategy comparison, we advice to use
DARTS algorithm mainly by virtue of its fast convergence speed. Other
advantages of DARTS are the straightforwardness of the implementation
and its simplicity, which leaves a lot of room for customization. It might be
beneficial to use KL divergence regularization on the architecture parameters
or employ the single path variant of the algorithm to achieve further speed
up. A good alternative is the SNAS algorithm, which is comparable with the
DARTS in terms of performance and speed, and has built-in exploitation-
exploration trade-off control in a form of the Gumbel-Softmax temperature
parameter.
Random Search has proven to be a sensible baseline in terms of performance,
even though it lacks the speed of differentiable methods. We hypothesize that
this result serves as the evidence in favor of importance of the search space
design over the choice of the particular search algorithm. When the search
space contains enough adequately performing architectures, which can be
considered as local optima, Random Search will eventually pick one of them
given enough iterations. Other, more advanced methods can easily get stuck
in these local optima or oscillate between them. Thus, an important research
direction is the development of general and task-agnostic search spaces for
Multiple-Instance Probelms. There are some developments in this area[32][20],
however, they are mostly centered around convolutional architectures.
Random Search with Weight Sharing improves upon the speed of the standard
RS algorithm since weight sharing allows to estimate the performance of
candidate architecture efficiently without retraining them from scratch. It is
worth noting that in our experiments ENAS outperformed RS in terms of
speed because of the lower number of architecture evaluations. It is possible
that RS could reach comparable results in a shorter amount of time. This
requires more extensive experiments focused on the Random Search algorithm.
It is clear that search methods are constrained by the capacity of the search
space. The bias that is introduced by adopting patterns from the human-
designed architectures can potentially limit the performance of discovered
architectures. Novel network architectures can not be discovered if the search
space is too constrained, and in this case NAS algorithms reduce to an efficient
hyper-parameter optimization method.
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Chapter 5

Conclusions

This thesis contains a theoretical overview of the state-of-the-art Neural
Architecture Search methods and the experimental study of the performance
of selected search algorithms on Neural Networks for Multiple Instance
Learning Neural Networks, which are designed to operate on sets of instances.
We also briefly review the general idea of MIL networks and some recent
developments in this area, such as attention pooling.
The goal of Neural Architecture Search methods is to automate the design of
neural network architectures, which is a time-consuming task that requires
extensive human expert knowledge. NAS is a novel technique and is still in
active research. State-of-the-art methods in this area were evaluated mainly
on convolutional and recurrent architectures. We transfer these methods
to the Multiple Instance Learning domain by developing a search space for
MIL networks. Next, we run extensive experiments evaluating selected NAS
algorithms and their variations on four different MIL tasks and analyze the
results, providing practical recommendations on applying NAS methods to
design MIL neural networks. We implemented selected search algorithms and
an interface for search spaces in the Julia programming language to conduct
the experiments.
We conclude that search space design is a critical component to the successful
application of NAS methods. Thus, potential future work could be aimed
at designing general and expressive search spaces agnostic to the particular
learning task and unifying search spaces for MIL and other networks.
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Appendix A

Implementation Details

This appendix contains the technical information about the implementation
and experiment reproduction. The code is available as the supplementary
material to the text and in the GitHub repository https://github.com/
nikitati/Nas.jl.

A.1 Library Usage

We implement a minimalistic package for neural architecture search Nas.jl
using the Julia language. The main primitive is the ChoiceNode which repre-
sents an architecture choice. Using choice nodes, users can build arbitrary
search spaces in a similar fashion of how models defined in the Flux.jl library.
Choice node can be parameterized by either StatefulSoftmax,GumbelSoftmax
or nothing. The last case is intended for non-differentiable search algorithms.
Library provides implementations of the Random Search, DARTS, SNAS
and ENAS algorithms. They are available via corresponding structures
RandomSearch, DARTSearch, SNASearch and ENASearch. Once configured,
they can be run with the optimize! method. Optimized search space can
be sampled with the sample_architecture method to obtain candidate
architectures.

Listing A.1: Nas.jl usage example
us ing Flux
us ing Nas
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s ea rchspace = Chain (

Dense (28∗28 , 256 , Flux . r e l u ) ,
ChoiceNode (GumbelSoftmax , [

Dense (256 , 128 , Flux . r e l u ) ,
Dense (256 , 128 , Flux . tanh )

] ) ,
)

snas = SNASearch ( epochs=10, tmpdecay=0.01 , opt=ADAM( ) )
data = . . .
l o s s = . . .
opt imize ! ( snas , searchspace , l o s s , data )

model = sample_arch i tecture ( searchspace )
Flux . t r a i n ! ( model , . . . )

A.2 Running the Experiments

We tried to make the experiments as reproducible as possible. It is achieved
with the Julia packaging system Pkg and docker technology. Docker is used
to automate the process of installing the Julia language and downloading and
compiling necessary packages.
The musk dataset is included in the supplementary meterial, however, other
datasets have to be downloaded from sources and pre-processed with the
generate_data.jl script.

Listing A.2: Running the musk experiment from docker
docker bu i ld −t nas . # run in the Nas . j l d i r e c t o r y
docker run − i t −−rm nas j u l i a −−p ro j e c t musk . j l
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